Last Updated: 12/07/2023

How to starve a parasite: Manipulating CoA biosynthesis to control Plasmodium development in the mosquito

Objectives

To explore the effects of increasing Pan kinase (PanK) activity in the mosquito to convert pantothenate (Pan) into coenzyme A (CoA) and starve the malaria parasite of this essential precursor.

Principal Investigators / Focal Persons

Shirley Luckhart
Micheal Allen Riehle

Rationale and Abstract

Malaria parasites require pantothenate (Pan) from both the insect and mammalian hosts to synthesize coenzyme A (CoA) and acetyl-CoA (AC). Further, mosquito-stage parasites cannot take up preformed CoA from the insect host, so they are entirely dependent on mosquito Pan availability. Thus, the hypothesis is that reducing Pan stores in the mosquito by increasing Pan kinase (PanK) activity and, in turn, CoA biosynthesis will limit parasite survival in the mosquito, without impacting the availability of CoA/AC to the mosquito itself. PanK is the rate-limiting enzyme in the CoA biosynthesis pathway and a logical target for the approach. To accomplish the objective the study will utilize PanK-targeted small molecules or pantazines and genetic manipulation of PanK in the study host Anopheles stephensi. The project will screen pantazines from a library of compounds developed by the collaborators at St. Jude Children’s Hospital. Aim 1 will use a Go-No Go strategy for pantazine screening that culminates in testing the capacity of selected pantazines to reduce P. falciparum and Plasmodium yoelii infections in A. stephensi. Aim 2 will validate the bioactivity and specificity of candidate pantazines identified in the screen in Aim 1. The specificity of candidate pantazines to activate PanK will be assessed through RNAi or CRISPR/Cas9 knockdown of PanK, followed by a characterization of the impact on Pan, CoA, AC and parasite infection success. Concurrent with Aims 1 and 2, transgenic A. stephensi with increased PanK activity will be generated and determine the impact on Pan levels and parasite survival in Aim 3. The generation of transgenic mosquitoes with increased midgut PanK expression will contribute to the assessment of PanK-dependent depletion of Pan stores on parasite infection as well as other aspects of mosquito biology related to vectorial capacity. Specifically, the project will define the effects of mosquito PanK activation, via both pantazine treatment and molecular manipulations, on A. stephensi lifespan, stress responses, metabolism and reproduction. These studies will reveal important new insights into nutrient-driven mosquito-parasite interactions that drive parasite infection success and they will support future efforts to optimize pantazines and novel transgenic lines as distinct strategies for mosquito-targeted malaria control.

Date

Apr 2023 — Mar 2027

Total Project Funding

$622,463

Project Site

United States

SHARE

Related Resources

Related Projects

SHARE